

THE DIRECT METHANOL FUEL CELL PROSPECTS FOR COMMERCIALIZATION

GERALD HALPERT ADVANCED TECHNOLOGY PROJECTS OFFICE JET PROPULSION LABORATORY

PRESENTED AT

THE ROAD TO METHANOL FUEL CELL VEHICLES:

A NATIONAL FORUM SPONSORED BY AMI AND CMAI WASHINGTON D.C. February 4-5, 1999

THE DIRECT METHANOL FUEL CELL PROGRAM GOAL

TO TRANSFER THIS TECHNOLOGY FROM THE DEMONSTRATION STAGE INTO THE COMMERCIAL MARKETPLACE

DIRECT METHANOL FUEL CELL SYSTEM ADVANTAGES

USE OF METHANOL AS A FUEL

- OFFERS HIGHER VOLUMETRIC ENERGY DENSITY THAN H₂ (5 KWH / L)
- NO CO OR NO_x EMISSIONS PRODUCES ONLY H₂O AND CO₂
- PROVIDES CONVENIENT / RAPID FUEL DELIVERY / STORAGE
- ELIMANATES HIGH PRESSURE H₂ / HYDRIDE STORAGE

DIRECT METHANOL OXIDATION REACTION

- ELIMINATES REFORMER REDUCES COMPLEXITY
- REDUCES WEIGHT AND VOLUME OF THE FUEL CELL SYSTEM
- EXHIBITS MILLISECOND RESPONSE TO LOAD CHANGES

LIQUID FEED DESIGN RESULTS IN

- SIMLIFIED THERMAL MANAGEMENT AND CONTROLS
- PREVENTION OF PROTON EXCHANGE MEMBRANE DRYOUT

DMFC IS A PRACTICAL AND ATTRACTIVE ALTERNATIVE TO THE REFORMATE OR H₂ / AIR SYSTEM

TRANSPORTATION APPLICATIONS FOR THE DIRECT METHANOL FUEL CELL

APPLICATIONS FOR THE DIRECT METHANOL, LIQUID-FEED FUEL CELL

NEAR TERM
SAIL / POWER BOATS
EMERGENCY POWER
GOLF CARTS
PEOPLE MOVERS
AIRPORT VEHICLES
FACTORY TRUCKS
LAWN MOWERS

DIRECT METHANOL FUEL CELL VEHICLES

DIRECT METHANOL FUEL CELL SCHEMATIC

DIRECT METHANOL FUEL CELL SYSTEM CONCEPT

JPL DIRECT METHANOL FUEL CELL PROGRAMS

- DEMONSTRATE A 150 W SYSTEM FOR DARPA
 DEVELOP MATERIALS, STACKS, MEMBRANES AND SYSTEMS
 50 W OPERATING SYSTEM DEMONSTRATED 4/97
 - MATERIALS SELECTION / EVALUATION PREPARATION FOR UNIV. OF MINN. / ARMY RESEARCH OFFICE
 - DEMONSTRATE A HYBRID FUEL CELL / BATTERY FIELD UNIT FOR ARMY FIELD APPLICATIONS
- DEVELOP A 1KW DEMO SYSTEM FOR CALIFORNIA

COLLABORATORS

JET PROPULSION LABORATORY CALIFORNIA INSTITUTE OF TECHNOLOGY GINER INC. H-POWER CO. UNIVERSITY OF SOUTHERN CALIFORNIA CARNEGIE MELLON UNIVERSITY UNIVERSITY OF MINNESOTA

VALIDATION OF THE DIRECT METHANOL FUEL CELL TECHNOLOGY

- 200 HOURS OF CONTINUOUS STACK OPERATION AT 90 °C
 No Noticeable Degradation
- 4500 HOURS OF INTERMITTENT STACK OPERATION AT 60°C
 Minimal Loss in Power
- CONTINUOUS SYSTEM OPERATION USING METHANOL SENSOR
- STABLE HIGH PERFORMANCE PT-RU CATALYSTS AND PROTON EXCHANGE MEMBRANE ASSEMBLIES
- ELECTROCHEMICAL AND THERMAL STABILITY
 DEMONSTRATED BY LOW CROSSOVER USC MEMBRANE
 Up to 100°C in Limited Testing
- DEMONSTRATED 34% EFFICIENCY OF METHANOL (>1.5 kWh/l) ON A STACK BASIS

VALIDATION OF THE TECHNOLOGY

- DIRECT METHANOL FUEL CELL CONCEPT DEMONSTRATED- 1992
- DEMONSTRATED PROMISING PERFORMANCE
 - 34% STACK EFFICIENCY AT 90°C
 200 HOURS OF CONTINUOUS STACK OPERATION AT 90 °C
 No Noticeable Degradation
 - 4500 HOURS OF INTERMITTENT STACK OPERATION AT 60°C
 Minimal Loss in Power
- DEVELOPED A NEW PROTON EXCHANGE (PEM) MEMBRANE
 - REDUCES METHANOL CROSSOVER FROM 20 5%
 - IMPROVES METHANOL EFFICIENCY TO 45% (2KWH/L)
- DEMONSTRATED FUEL CELL SYSTEMS
 - 50W, HYBRID FIELD UNIT AND 150W SYSTEMS
- WORK IN PROGRESS
 - 1-5 KW SYSTEMS

FIRST DEMONSTRATION OF A DIRECT METHANOL 50 W FUEL CELL OPERATING SYSTEM

DIRECT METHANOL FUEL CELL / BATTERY HYBRID SYSTEM FOR ARMY FIELD USE

DMFC HYBRID SYSTEM

LI-ION BATTERY FOR PULSE POWER

DMFC FUEL CELL STACK FOR RECGHARGING

220 WH OVER FOR 6 MONTHS

PEAK POWER 5 A

MINUMUM STARTUP TIME

TEMPERATURE -32 TO 63°C

WATER / THERMAL BALANCE

DIRECT METHANOL 150 W FUEL CELL BATTERY SYSTEM LAYOUT

BATTERY CHARGER

150 W **POWER**

CAPACITY 5000 WH

24V VOLTAGE

CURRENT 6.25A

MASS (W FUEL) 12 KG

VOL.

30 LITERS

OP. TEMP. 15-42°C

START -UP < 1 MIN.

DIRECT METHANOL 2.3 KW FUEL CELL SYSTEM IN A LIGHT DUTY VEHICLE APPLICATION

PEOPLE-MOVER

LOAD CAPACITY 1600 LBS

BED VOLUME 253 LITERS

SYS. VOL. 80 LITERS

MASS 118 KG

MEOH TANK 10LITERS

ENERGY 12.3 KWH

CONT. OPER. 10 HRS

INTELLECTUAL PROPERTY STATUS

24 NEW TECHNOLOGY REPORTS
20 PATENT APPLICATIONS
3 ISSUED PATENTS
BASIC TECHNOLOGY PATENT
5,599,638

DIRECT METHANOL FUEL CELL CHALLENGES AND RESOLUTIONS

- Methanol Crossover Reduces Performance
 - Solution USC Membrane Cuts Crossover From 20-5%
- Water Accumulation And Removal
 - Solution New Flow Fields & Materials Solve Problem
- Stack Efficiency At 34%
 - Solution Stack Design, New Membrane, Increased
 Methanol Concentration Can Raise Efficiency To 45%
- Catalyst Preparation Is Time Consuming
 - Solution Engineering / Manufacturing Scale-Up Will Reduce Process Time

DIRECT METHANOL FUEL CELL CONCLUSIONS

- METHANOL FUEL CELLS HAVE APPLICATION OVER A WIDE POWER RANGE FROM LOW WATTS TO KILOWATTS
- METHANOL IS A CONVENIENT FUEL THAT IS EASY TO HANDLE AND STORE
- THE DIRECT METHANOL FUEL CELL SYSTEM IS LESS COMPLEX, AND EASIER TO REFUEL AND OPERATE THAN THE COMPETING TECHNOLOGY

A FINAL THOUGHT FOR YOUR CONSIDERATION

THE TECHNOLOGY IS READY

THE APPLICATIONS EXIST

THE ENVIRONMENT AWAITS

THE CHALLENGE IS FOR INDUSTRY TO MOVE IT INTO COMMERCIALIZATION